研究 三角形の面積

 \triangle OABにおいて、 $\overrightarrow{OA} = \vec{a}$ 、 $\overrightarrow{OB} = \vec{b}$ とするとき、 \triangle OABの面積Sは、

$$S = \frac{1}{2} \sqrt{|\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2} \cdot \cdot \cdot \cdot (A)$$

特に、 \vec{a} =(a₁、a₂)、 \vec{b} =(b₁、b₂)のときは、

$$S = \frac{1}{2} |a_1 b_2 - a_2 b_1| \cdots (B)$$

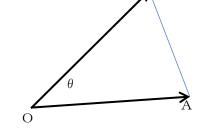
(証明)

 $\angle AOB = \theta$, $0^{\circ} < \theta < 180^{\circ}$ とする。

△OABの面積Sは、

$$S = \frac{1}{2} \cdot OA \cdot OB \cdot \sin \theta = \frac{1}{2} |\vec{a}| |\vec{b}| \sin \theta \qquad \cdots \text{ }$$

 $2\pi \cos^2 \theta + \cos^2 \theta = 1 \sin^2 \theta = 1 - \cos^2 \theta$



$$\therefore \sin \theta = \pm \sqrt{1 - \cos^2 \theta}$$

$$0^{\circ} < \theta < 180^{\circ}$$
 LU, $\sin \theta > 0$ Lot, $\sin \theta = \sqrt{1 - \cos^2 \theta}$...②

したがって、②を①に代入して、

$$S = \frac{1}{2} |\vec{a}| |\vec{b}| \sin \theta = \frac{1}{2} |\vec{a}| |\vec{b}| \sqrt{1 - \cos^2 \theta}$$
$$= \frac{1}{2} \sqrt{|\vec{a}|^2 |\vec{b}|^2 - |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta}$$

$$A>0$$
 のとき、 $A\sqrt{B}=\sqrt{A^2B}$

ここで、
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$
 より、 $(\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta$ であるから、

$$S = \frac{1}{2} \sqrt{\left| \vec{a} \right|^2 \left| \vec{b} \right|^2 - \left(\vec{a} \cdot \vec{b} \right)^2}$$

また、
$$\vec{a}$$
=(a₁、a₂)、 \vec{b} =(b₁、b₂)のとき、

$$|\vec{a}| = \sqrt{a_1^2 + a_1^2}$$
 ± 9 , $|\vec{a}|^2 = a_1^2 + a_1^2$
 $|\vec{b}| = \sqrt{b_1^2 + b_1^2}$ ± 9 , $|\vec{b}|^2 = b_1^2 + b_1^2$

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2$$

より、(A)の根号内の計算を行うと、

$$|\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2 = (a_1^2 + a_2^2) (b_1^2 + b_2^2) - (a_1b_1 + a_2b_2)^2$$

$$= a_1^2 b_1^2 + a_1^2 b_2^2 + a_2^2 b_1^2 + a_2^2 b_2^2 - (a_1^2 b_1^2 + 2 \ a_1b_1 a_2 b_2 + a_2^2 b_2^2)$$

$$= a_1^2 b_2^2 - 2 \ a_1b_1 a_2 b_2 + a_2^2 b_1^2$$

$$= (a_1 b_2 - a_2 b_1)^2$$

したがって、

$$S = \frac{1}{2} \sqrt{|\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2} = \frac{1}{2} \sqrt{(a_1 b_2 - a_2 b_1)^2} = \frac{1}{2} |a_1 b_2 - a_2 b_1|$$

$$\times \sqrt{A^2} = |A|$$

練習 1 $|\overrightarrow{OA}| = 4$ 、 $|\overrightarrow{OB}| = 5$ 、 $\overrightarrow{OA} \cdot \overrightarrow{OB} = -10$ の \triangle OAB の面積Sを求めよ。

$$S = \frac{1}{2}\sqrt{4^2 \times 5^2 - (-10)^2} = 5\sqrt{3}$$

練習 2 3 点 O(0、0)、A(4、1)、B(2、-1)を頂点とする三角形の面積Sを求めよ。

$$\overrightarrow{OA} = (4, 1), \overrightarrow{OB} = (2, -1)$$

$$S = \frac{1}{2}|4 \times (-1) - 1 \times 2| = 3$$