B 直線上の点

<例37>において、

$$\overrightarrow{AP} = \frac{1}{3}\overrightarrow{b} + \overrightarrow{d} = \frac{\overrightarrow{b} + 3\overrightarrow{d}}{3}$$

$$\overrightarrow{AQ} = \frac{1}{4}\overrightarrow{b} + \frac{3}{4}\overrightarrow{d} = \frac{\overrightarrow{b} + 3\overrightarrow{d}}{4}$$

$$\downarrow \emptyset, \overrightarrow{AQ} = \boxed{\frac{3}{4}}\overrightarrow{AP} \cdots \bigcirc$$

①より、 $\overrightarrow{AQ}//\overrightarrow{AP}$ であり、

点Aを共有しているので、3点A、P、Qは一直線上にある。

一般に、次のことが成り立つ。

2点A、Bが異なるとき、

点 C が、直線 A B 上にある \iff $\overrightarrow{AC} = k \overrightarrow{AB}$ となる実数kがある。 (3 点A、B、Cが一直線上にある)

<例 38>平行四辺形ABCD において、辺 BC を 3:2 に内分する点を E、対角線 BD を 3:5に内分する点をFとする。このとき、3点A、F、Eは一直線上にあることを示せ。また、 AF:FE を求めよ。

ヒント始点がAの位置ベクトルで考え、ABとADを基準にとる。

$$\overrightarrow{AF} = \frac{3\overrightarrow{AD} + 5\overrightarrow{AB}}{3 + 5} = \frac{5\overrightarrow{AB} + 3\overrightarrow{AD}}{8}$$

$$\overrightarrow{AE} = \overrightarrow{AB} + \frac{3}{5} \overrightarrow{AD} = \frac{5\overrightarrow{AB} + 3\overrightarrow{AD}}{5}$$

 \mathbf{E} 2

従って、 $\overrightarrow{AF} = \frac{5}{\alpha}$ \overrightarrow{AE} となり、3 点 A、F、E は一直線上にある。

これより、AF:AE=5:3 であることが分かる。

<例 39> \triangle ABC において, 辺 AB を 2:1 に内分する点を D, 辺 BC の中点を M とし, 線分 AM と CD の交点を E とする。 $\overrightarrow{AB} = \overrightarrow{b}$, $\overrightarrow{AC} = \overrightarrow{c}$ として, 次の問に答えよ。

(1) \overrightarrow{AM} を \overrightarrow{b} 、 \overrightarrow{c} で表せ。

$$M$$
 は、BC の中点より、 $\overrightarrow{AM} = \frac{\overrightarrow{b} + \overrightarrow{c}}{2}$

(2) 3 点 A、E、M は 1 直線上にあることより、 $\overrightarrow{AE} = s\overrightarrow{AM}$ とおける。 このとき、 \overrightarrow{AE} を s、 \overrightarrow{b} 、 \overrightarrow{c} で表せ。

$$\overrightarrow{AE} = s\overrightarrow{AM} = s \times \frac{\overrightarrow{b} + \overrightarrow{c}}{2} = \frac{s}{2}\overrightarrow{b} + \frac{s}{2}\overrightarrow{c} \cdots \bigcirc$$

(3) CE:ED=t:(1-t)とおくとき、 \overrightarrow{AE} を t、 \overrightarrow{b} 、 \overrightarrow{c} で表せ。

内分公式より、
$$\overrightarrow{AE} = \frac{t\overrightarrow{AD} + (1-t)\overrightarrow{AC}}{t + (1-t)} = \frac{2t}{3}\overrightarrow{b} + (1-t)\overrightarrow{c}$$
 ・・・ ②

(4) \overrightarrow{AE} を \overrightarrow{b} 、 \overrightarrow{c} で表せ。

 $\vec{b} \neq \vec{0}$ 、 $\vec{c} \neq \vec{0}$ で、 \vec{b} と \vec{c} は平行でないから、 \overrightarrow{AE} の \vec{b} 、 \vec{c} を用いた表し方はただ1通りである。

(2)、(3)の**AE**を比較する。

$$\vec{b}$$
の係数を比較して、 $\frac{s}{2} = \frac{2t}{3}$ \therefore $3s = 4t$ \vec{c} の係数を比較して、 $\frac{s}{2} = 1 - t$ \therefore $s = 2 - 2t$

 \mathbb{C} の宗教を比較して、 $\frac{1}{2}$ 1 - \mathbb{C} : $\mathbb{S}-2$ -

これを解いて、

$$s = \frac{4}{5}$$
 , $t = \frac{3}{5}$

従って、
$$\overrightarrow{AE} = \begin{bmatrix} \frac{2}{5} & \overrightarrow{b} + \frac{2}{5} \end{bmatrix} \overrightarrow{c}$$