2 ベクトルの演算

A ベクトルの加法

ベクトル \overrightarrow{a} と、ベクトル \overrightarrow{b} に対して、

$$\vec{a} = \vec{AB}, \vec{BC} = \vec{b}$$

となるように点A、B、Cをとる。

このようにして定まるベクトル \overrightarrow{AC} を、 \overrightarrow{a} と \overrightarrow{b} の和といい、 \overrightarrow{a} + \overrightarrow{b} とかく。すなわち、

 \overline{a}

 $\overrightarrow{a} + \overrightarrow{b}$

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

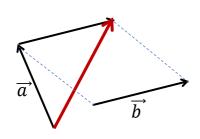
となる。ポイントは、

 \vec{a} の終点と \vec{b} の始点を合わせる。

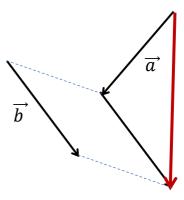
ことである。

<例 4> \overrightarrow{a} と \overrightarrow{b} が次のように与えられているとき, \overrightarrow{a} + \overrightarrow{b} を図示せよ。

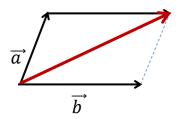
(1)



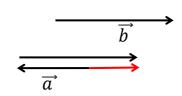
(2)



(3)



(4)



ベクトルの加法について, 次の計算法則が成り立つ。

I. 交換法則
$$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$$

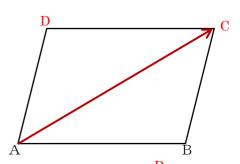
II. 結合法則
$$(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$$

(証明)

I. $\overrightarrow{a} = \overrightarrow{AB}$ 、 $\overrightarrow{BC} = \overrightarrow{b}$ であるように、点A, B、Cをとり、平行四辺形 ABCDを作る。

左辺=
$$\overrightarrow{a}$$
+ \overrightarrow{b} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}
右辺= \overrightarrow{b} + \overrightarrow{a} = \overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AC}
従って、 \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}

II. $\vec{a} = \vec{AB}$ 、 $\vec{b} = \vec{BC}$ 、 $\vec{c} = \vec{CD}$ とする。



左辺= $(\overrightarrow{a}+\overrightarrow{b})+\overrightarrow{c}=(\overrightarrow{AB}+\overrightarrow{BC})+\overrightarrow{CD}=\overrightarrow{AC}+\overrightarrow{CD}=\overrightarrow{AD}$ 右辺= $\overrightarrow{a}+(\overrightarrow{b}+\overrightarrow{c})=\overrightarrow{AB}+(\overrightarrow{BC}+\overrightarrow{CD})=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AD}$ 従って、 $(\overrightarrow{a}+\overrightarrow{b})+\overrightarrow{c}=\overrightarrow{a}+(\overrightarrow{b}+\overrightarrow{c})$

B 零ベクトル

$$\overrightarrow{a} = \overrightarrow{AB}$$
 のとき、 $-\overrightarrow{a} = \overrightarrow{BA}$ であるから、 $\overrightarrow{a} + (-\overrightarrow{a}) = \overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA}$

となり、始点と終点が同じ点になるベクトルになる。

このようなベクトルを零ベクトル(ゼロベクトル)といい、 $\overrightarrow{0}$ で表す。

$$\overrightarrow{AA} = \overrightarrow{0}, \overrightarrow{BB} = \overrightarrow{0}$$

また、零ベクトルの大きさは、 $\underline{0}$ とし、向きは考えないものとする。 <例 5>

$$(1)\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{AC} + \overrightarrow{CA} = \overrightarrow{AA} = \overrightarrow{0}$$

$$(2)\overrightarrow{AB} + \overrightarrow{O} = \overrightarrow{AB} + \overrightarrow{BB} = \overrightarrow{AB}$$